DisAp-dependent striated fiber elongation is required to organize ciliary arrays
نویسندگان
چکیده
Cilia-organizing basal bodies (BBs) are microtubule scaffolds that are visibly asymmetrical because they have attached auxiliary structures, such as striated fibers. In multiciliated cells, BB orientation aligns to ensure coherent ciliary beating, but the mechanisms that maintain BB orientation are unclear. For the first time in Tetrahymena thermophila, we use comparative whole-genome sequencing to identify the mutation in the BB disorientation mutant disA-1. disA-1 abolishes the localization of the novel protein DisAp to T. thermophila striated fibers (kinetodesmal fibers; KFs), which is consistent with DisAp's similarity to the striated fiber protein SF-assemblin. We demonstrate that DisAp is required for KFs to elongate and to resist BB disorientation in response to ciliary forces. Newly formed BBs move along KFs as they approach their cortical attachment sites. However, because they contain short KFs that are rotated, BBs in disA-1 cells display aberrant spacing and disorientation. Therefore, DisAp is a novel KF component that is essential for force-dependent KF elongation and BB orientation in multiciliary arrays.
منابع مشابه
CEP120 and SPICE1 Cooperate with CPAP in Centriole Elongation
Centrosomes organize microtubule (MT) arrays and are comprised of centrioles surrounded by ordered pericentriolar proteins. Centrioles are barrel-shaped structures composed of MTs, and as basal bodies they template the formation of cilia/flagella. Defects in centriole assembly can lead to ciliopathies and genome instability. The assembly of procentrioles requires a set of conserved proteins. It...
متن کاملTransdifferentiation of chicken embryonic cells into muscle cells by the 3' untranslated region of muscle tropomyosin.
Transfection with a plasmid encoding the 3' untranslated region (3' UTR) of skeletal muscle tropomyosin induces chicken embryonic fibroblasts to express skeletal tropomyosin. Such cells become spindle shaped, fuse, and express titin, a marker of striated muscle differentiation. Skeletal muscle tropomyosin and titin organize in sarcomeric arrays. When the tropomyosin 3' UTR is expressed in osteo...
متن کاملChoroid tissue supports the survival of ciliary ganglion neurons in vitro.
It is well established that during in vivo development the neurons of the avian ciliary ganglion are dependent for their survival on structures in the eye. Separate neuron populations innervate intraocular smooth and striated muscle targets. All ciliary neurons survive when cocultured with striated muscle. We demonstrate that when ciliary ganglion neurons are plated on explants of the choroid c...
متن کاملDrosophila D-titin is required for myoblast fusion and skeletal muscle striation.
An ethylmethane sulfonate (EMS) mutagenesis of Drosophila melanogaster aimed at discovering novel genes essential for neuromuscular development identified six embryonic lethal alleles of one genetic locus on the third chromosome at 62C. Two additional lethal P element insertion lines, l(3)S02001 and l(3)j1D7, failed to complement each other and each of the six EMS alleles. Analysis of genomic s...
متن کاملThe ciliary rootlet interacts with kinesin light chains and may provide a scaffold for kinesin-1 vesicular cargos.
The ciliary rootlet is a large striated fibrous network originating from basal bodies in ciliated cells. To explore its postulated role in intracellular transport, we investigated the interaction between kinesin light chains (KLCs) and rootletin, the structural component of ciliary rootlets. We show here that KLCs directly interact with rootletin and are located along ciliary rootlets. Their in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 207 شماره
صفحات -
تاریخ انتشار 2014